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Representation and Description

❑ Objective:
➢ To represent and 

describe information 
embedded in an image 
in other forms that are 
more suitable than the 
image itself.

❑ Benefits:
➢ Easier to understand
➢ Require fewer memory
➢ Faster to processed



Feature Extraction

After an image has been segmented into regions or their boundaries using 

methods such as:

➢ Segmentation by region growing and by region splitting and merging

➢ Region segmentation using clustering and superpixels

➢ Region segmentation using gragh cuts

➢ Segmentation using morphological watersheds

the resulting sets of segmented pixels usually have to be converted into a form 

suitable for further computer processing. Typically, the step after segmentation 

is feature extraction



Feature extraction categories
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❑ Feature detection: 

refers to finding the 

features

in an image, region, 

or boundary. 

❑ Feature description: 

assigns quantitative 

attributes to the 

detected features.

For example, we might detect corners in a 

region boundary, and describe those corners by 

their orientation and location, both of which are 

quantitative attributes. 



whose output is an ordered sequence of points. We assume (1) that we are working with 

binary images in which object and background points are labeled 1 and 0, respectively; 

and (2) that images are padded with a border of 0’s to eliminate the

possibility of an object merging with the image border.

Boundary-following algorithm



Chain codes are used to represent a boundary by a 

connected sequence of straightline segments of specified 

length and direction. We assume in this section that all

curves are closed, simple curves (i.e., curves that are 

closed and not self intersecting).

Chain codes



Freeman Chain Codes
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a chain code representation is based on 4-

or 8-connectivity of the segments. The 

direction of each segment is coded by 

using a numbering scheme, as in the Fig.

A boundary code formed as a sequence of 

such directional numbers is referred

to as a Freeman chain code.

4-connectivity 8-connectivity



Chain code problems

a chain code could be generated by following a boundary in, say, a clockwise 

direction and assigning a direction to the segments connecting every pair of 

pixels. This level of detail generally is not used for two principal reasons:

➢ The resulting chain would be quite long 

➢ any small disturbances along the boundary due to noise or imperfect 

segmentation would cause changes in the code that may not be related to 

the principal shape features of the boundary.



An approach used to address these problems is to resample 

the boundary by selecting a larger grid spacing, as in 

Fig.(a). Then, as the boundary is traversed, a boundary 

point is assigned to a node of the coarser grid, depending 

on the proximity of the original boundary point to that 

node, as in Fig.(b). The resampled boundary obtained in 

this way can be represented by a 4- or 8-code. Figure(c) 

shows the coarser boundary points represented by an 8-

directional chain code.

Resampling



Normalization for chain codes

The numerical value of a chain code depends on the starting point. However, the code can be 

normalized:

➢ with respect to the starting point by a straightforward procedure: We simply treat the chain 

code as a circular sequence of direction numbers and redefine the starting point so that the 

resulting sequence of numbers forms an integer of minimum magnitude.

➢ We can normalize also for rotation by using the first difference of the chain code instead of the 

code itself. This difference is obtained by counting the number of direction changes (in a 

counterclockwise direction).

Example: 101003333222 normalized to 003333222101
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(a) Noisy image of size 570 570  pixels. (b) Image smoothed 

with a 9*9  box kernel. (c) Smoothed

image, thresholded using Otsu’s method. (d) Longest outer 

boundary of (c). (e) Subsampled boundary (the points

are shown enlarged for clarity). (f) Connected points from (e)

EXAMPLE: Freeman 
chain code and 
some of its 
variations



The starting point of the boundary is at coordinates (2, 5) in the 
subsampled.
➢ The 8-directional Freeman chain code of the simplified boundary is

0 0 0 0 6 0 6 6 6 6 6 6 6 2 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2

➢ The integer of minimum magnitude of the code happens in this case 
to be the same as the chain code:
0 0 0 0 6 0 6 6 6 6 6 6 6 2 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2

➢ The first difference of the code is
0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 0 6 2 0 6 2 6

EXAMPLE: Freeman chain code and 
some of its variations (cont.)



Using Freeman chain codes generally requires resampling a boundary to 

smooth

small variations, a process that implies defining a grid and subsequently 

assigning

all boundary points to their closest neighbors in the grid. An alternative to 

this

approach is to use slope chain codes (SCCs) (Bribiesca [1992, 2013]). The 

SCC of a

2-D curve is obtained by placing straight-line segments of equal length 

around the

curve, with the end points of the segments touching the curve.

Slope Chain Codes



(a) An open curve. (b) A straight-line segment. (c) Traversing 

the curve using circumferences to determine slope changes; the 

dot is the origin (starting point). (d) Range of slope changes in 

the open interval ( , ) -1 1

(the arrow in the center of the chart indicates direction of 

travel). There can be ten subintervals between the slope

numbers shown.(e) Resulting coded curve showing its 

corresponding numerical sequence of slope changes

The sequence of slope changes is the chain that defines the SCC 

approximation to the original curve. For example, the code for 

the curve in Fig. (e) is 0 12 . , 0 20 . , 0 21 . , 0 11 . , -0 1 . , 1 -

0 1 . , 2 -0 2 . , 1 -0 2 . , 2 -0 2 . , 4 -0 2 . , 8 -0 2 . , 8 -0 3 . , 1 

-0 3 . . 0 The accuracy of the slope changes defined in Fig. (d) 

is 10-2, resulting in an “alphabet” of 199 possible symbols (slope 

changes).The accuracy can be changed, of course. For instance, 

and accuracy of 10-1 produces an alphabet of 19 symbols
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(a) An object boundary. (b) Boundary enclosed by cells 

(shaded). (c) Minimum-perimeter polygon

obtained by allowing the boundary to shrink. The vertices of the 

polygon are created by the corners of the inner

and outer walls of the gray region

BOUNDARY APPROXIMATIONS 

USING MINIMUM-PERIMETER
POLYGONS

An intuitive approach 
for computing MPPs is 
to enclose a boundary 
[see Fig.(a)] by a set of 
concatenated cells.



A signature is a 1-D functional representation of a 2-D boundary and may be generated in various ways. One of the simplest is 
to plot the distance from the centroid to the boundary as a function of angle, as illustrated in Fig. 11.10. The basic idea of using 
signatures is to reduce the boundary representation to a 1-D function that presumably is easier to describe than the original 2-D 
boundary.
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Distance-versusangle

signatures.

In (a), r(θ) is constant. In (b),

the signature consists of

repetitions of the pattern
r (θ) =A secθ for 0<=θ<=π/4, 

and
r (θ) = csc for π/4 <=θ<=π/2

SIGNATURES



The length of a boundary is one of its simplest descriptors. The number of pixels along a boundary is an approximation of 

its length. For a chain-coded curve with unit spacing in both directions, the number of vertical and horizontal components 

plus 2 multiplied by the number of diagonal components gives its exact length. If the boundary is represented by a 

polygonal curve, the length is equal to the sum of the lengths of the polygonal segments.

SOME BASIC BOUNDARY DESCRIPTORS



The curvature of a boundary is defined as the rate of change of slope. In general,

obtaining reliable measures of curvature at a point of a raw digital boundary is 

difficult because these boundaries tend to be locally “ragged.” Smoothing can 

help, but a more rugged measure of curvature is to use the difference between 

the slopes of adjacent boundary segments that have been represented as straight 

lines. 

Curvature of a boundary 



An important measures of blood vessel morphology is its tortuosity. This metric can assist in the computeraided diagnosis of 

Retinopathy of Prematurity (ROP), an eye disease that affects babies born prematurely (Bribiesca [2013]). ROP causes 

abnormal blood vessels to grow in the retina .This growth can cause the retina to detach from the back of the eye, potentially 

leading to blindness.

Figure (a) shows an image of the retina (called a fundus image) from a newborn baby. Ophthalmologists diagnose and make 

decisions about the initial treatment of ROP based on the appearance of retinal blood vessels. Dilatation and increased 

tortuosity of the retinal vessels are signs of highly probable ROP. Blood vessels denoted A, B, and C in the Fig were selected 

to demonstrate the discriminative potential of SCCs for quantifying tortuosity (each vessel shown is a long, thin region, not 

a line segment).

The border of each vessel was extracted and its length (number of pixels), P, was calculated. To make SCC comparisons 

meaningful, the three boundaries were normalized so that each would have the same number, m, of straight-line segments. 

The length, L, of the line segment was then computed as L m P = . It follows that the number of elements of each SCC is m -

1. The tortuosity, t, of a curve represented by an SCC is defined as the sum of the absolute values of the chain elements, as 

noted in Eq. 

The table in Fig. (b) shows values of t for vessels A, B, and C based on 51 straight-line segments

(as noted above, n m = - 1). The values of tortuosity are in agreement with our visual analysis of the

three vessels, showing B as being slightly “busier” than A, and C as having the fewest twists and turns.

EXAMPLE: Using slope chain 
codes to describe tortuosity



(a) Fundus image from a prematurely born baby with ROP.

(b) Tortuosity of vessels A, B, and C



The shape number of a Freeman chain-coded boundary, based on the 4-directional code of Fig. 11.3(a), is 

defined as the first difference of smallest magnitude. The order, n, of a shape number is defined as the 

number of digits in its representation. Moreover, n is even for a closed boundary, and its value limits the 

number of possible different shapes

Shape numbers



EXAMPLE : Computing shape numbers
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Suppose that n = 18 is specified for the boundary 
in Fig.(a). To obtain a shape number of this order 
we follow the steps just discussed. First, we find 
the basic rectangle, as shown in Fig.(b). Next we 
find the closest rectangle of order 18. It is a 3 6 
rectangle, requiring the subdivision of the basic 
rectangle shown in Fig.(c). The chain-code 
directions are aligned with the resulting grid. The 
final step is to obtain the chain code and use its 
first difference to compute the shape number, as 
shown in Fig.(d)



The figure shows a digital boundary in 

the xy-plane, consisting of K points. 

Starting at an arbitrary point (𝑥0, 𝑦0) 

,coordinate pairs (𝑥0, 𝑦0), (𝑥1, 𝑦1),........,  

are encountered in traversing the 

boundary, say, in the counterclockwise 

direction. These coordinates can be 

expressed in the form of x(k)=𝑥𝑘Using

this notation, the boundary itself can be 

represented as the sequence of 

coordinates s(k)=[x(k),y(k)] for 

k=0,1,2,….,k-1Moreover, each 

coordinate pair can be

treated as a complex number so that :

Fourier descriptors



Figure (a) shows the boundary of a human chromosome, consisting of 

2868 points. The corresponding 2868 Fourier descriptors were obtained 

using Eq. The objective of this example is to examine the effects of 

reconstructing the boundary using fewer Fourier descriptors. Figure (b) 

shows the boundary reconstructed using one-half of the 2868 descriptors in 

Eq. Observe that there is no perceptible difference between this boundary 

and the original. Figures(c) through (h) show the boundaries reconstructed 

with the number of Fourier descriptors being 10%, 5%, 2.5%, 1.25%, 

0.63% and 0.28% of 2868, respectively. When rounded to the nearest even 

integer, these percentages are equal to 286, 144, 72, 36, 18, and 8 

descriptors, respectively. The important point is that 18 descriptors, a mere

six-tenths of one percent of the original 2868 descriptors, were sufficient to 

retain the principal shape features of the original boundary: four long 

protrusions and two deep bays. Figure (h), obtained with 8 descriptors, is 

unacceptable because the principal features are lost. Further reductions to 4 

and 2 descriptors would result in an ellipse and a circle, respectively.

EXAMPLE: Using Fourier 
descriptors



What is a Feature?

a feature is a piece of information about the content of an image; 

typically about whether a certain region of the image has certain properties. 

Features include things like, points, edges, blobs, and corners. 

For example, suppose you saw this feature?

With just two features, you were able to identify this object. 

Computers follow a similar process when you run a feature detection algorithm to perform 
object recognition.



Region Descriptors :-

The area of a region is defined as the number of pixels in the region.

The perimeter of a region is the length of its boundary. When area and perimeter are used as 
descriptors, they generally make sense only when they are normalized .

❖TOPOLOGICAL DESCRIPTORS:-

Topology is the study of properties of a figure that are unaffected by any deformation, provided that there is no 
tearing or joining of the figure (sometimes these are called rubber-sheet distortions)

For example, Fig. 1.1(a) shows a region with two holes. Obviously, a topological descriptor defined as the 
number of holes in the region will not be affected by a stretching or rotation transformation. However, the 
number of holes can change if the region is torn or folded.

a    b

Figure 1.1



Figure 1.2 shows a polygonal network. Classifying interior regions of such a network into faces and 
holes is often important. Denoting the number of vertices by V, the number of edges by Q, and the 
number of faces by F gives the following relationship, called the Euler formula:

The network in Fig. 1.2 has seven vertices, eleven edges, two faces, one connected region, and three 
holes; thus the Euler number is −2 .

figure 1.2



• Figure 1.3(a) shows a 512 x 512 , 8-bit image of Washington, D.C. taken by a NASA LANDSAT 
satellite. This image is in the near infrared band. Suppose that we want to segment the river using 
only this image (as opposed to using several multispectral images, which would simplify the task, 
as you will see later in this chapter). Because the river is a dark, uniform region relative to the rest 
of the image, thresholding is an obvious approach to try. The result of thresholding the image with 
the highest possible threshold value before the river became a disconnected region is shown in 
Fig1.3(b). 

• The threshold was selected manually to illustrate the point that it would be impossible in this case 
to segment the river by itself without other regions of the image also appearing in the thresholded
result. The image in Fig. 1.3(b) has 1591 connected components (obtained using 8-connectivity) 
and its Euler number is 1552, from which we deduce that the number of holes is 39. Figure 1.3(c) 
shows the connected component with the largest number of pixels (8479). This is the desired result, 
which we already know cannot be segmented by itself from the image using a threshold. Note how 
clean this result is. The number of holes in the region defined by the connected component just 
found would give us the number of land masses within the river. If we wanted to perform 
measurements, like the length of each branch of the river, we could use the skeleton of the 
connected component [Fig. 1.3(d)] to do so.





Principle component as feature descriptors :-

Suppose that we are given the three component images of a color image.

The three images can be treated as

a unit by expressing each group of

three corresponding pixels

as a vector



Using principal components for image description:-

Figure shows six multispectral satellite images corresponding to six spectral bands: visible blue (450–520 nm), 
visible green (520–600 nm), visible red (630–690 nm), near infrared (760–900 nm), middle infrared (1550–1,750 
nm), and thermal infrared (10,400–12,500 nm). The objective of this example is to illustrate how to use principal 
components as image features. 

Multispectral images in the 

(a)visible blue, (b) visible green, 

(c) visible red, (d) near infrared, 

(e) middle infrared, and 

(f) thermal infrared bands. 

(Images courtesy of NASA.)



Figure 1.5 

Organizing the images as in Fig.1.5 leads to the formation of a six-element vector x 

from each set of corresponding pixels in the images, as discussed earlier in this 

section. 

The images in this example are of size 564 x 564pixels, so the population  consisted 

of                         ,vectors from which the mean vector, covariance matrix,and 

corresponding eigenvalues and eigenvectors were computed. 



Using principal components for normalizing for variations in size, translation, 
and rotation:-

feature descriptors should be as independent as possible of variations in size, translation, and rotation. 
Principal components provide a convenient way to normalize boundaries and/or regions for variations in these 
three variables.

Multispectral images reconstructed 

using only the two principal component

images corresponding to the two principal 

component vectors with the largest eigenvalues.





Whole-Image Features :-
The state of the art in image processing is such that as the complexity of the task increases, the number of 

techniques suitable for addressing those tasks decreases. This is particularly true when dealing with feature 

descriptors applicable to entire images that are members of a large family of images. In this section, we 

discuss two of the principal feature detection methods currently being used for this purpose. One is based on 

detecting corners, and the other works with entire regions in an image.

A manual example:

(a) Original points.

(b) Eigenvectors of the covariance matrix 

of the points in (a). 

(c) Transformed points  

(d) Points from (c), rounded and translated so 

that all coordinate values are integers greater than 0. 

The dashed lines are included to facilitate viewing. 

They are not part of the data.



THE HARRIS-STEPHENS CORNER DETECTOR:-

The Harris corner detector is a corner detection operator that is commonly used in computer vision 
algorithms to extract corners and infer features of an image.

Compared to the previous one, Harris' corner detector takes the differential of the corner score into 
account with reference to direction directly, instead of using shifting patches for every 45 degree 
angles, and has been proved to be more accurate in distinguishing between edges and corners.

Process of Harris corner detection algorithm:-

• Commonly, Harris corner detector algorithm can be divided into five steps.

1.Color to grayscale 

2.Spatial derivative calculation

3.Structure tensor setup

4.Harris response calculation

5.Non-maximum suppression



Color to grayscale:

If we use Harris corner detector in a color image, the first step is to convert it into a grayscale image, which will enhance the processing speed.

Spatial derivative calculation:

Structure tensor setup:



Harris response calculation:

Non-maximum suppression

In order to pick up the optimal values to indicate corners, we find the local maxima as corners within the window which is a 3 by 3 
filter.



Improvement:-
1. Harris-Laplace Corner Detector

2. Differential Morphological Decomposition Based Corner Detector

3. Multi-scale Bilateral Structure Tensor Based Corner Detector

Applications:-
1. Image Alignment, Stitching and Registration

2. 2D Mosaics Creation

3. 3D Scene Modeling and Reconstruction

4. Motion Detection

5. Object Recognition

6. Image Indexing and Content-based Retrieval

7. Video Tracking.



Figure Illustration of how the Harris-
Stephens corner detector operates in 
the three types of subregions 
indicated by A (flat), B (edge), and C 
(corner). The wiggly arrows indicate 
graphically a directional response in 
the detector as it moves in the three 
areas shown.



(a)–(c) Noisy images and image 
patches (small squares) 
encompassing image regions similar 
in content. (d)–(f) Plots of value pairs 
(fx,fy ) useful for detecting the 
presence of a corner in an image 
patch. 



SCALE-INVARIANT FEATURE TRANSFORM (SIFT):-



• DoG for scale-space feature detection

• Take 16x16 square window around detected feature at appropriate scale

• Compute gradient orientation for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations: note: each pixel contributes 
vote proportional to gradient magnitude

• Find mode of histogram and rotate patch so that mode is 0

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2

angle histogram

Mode=dominant 
orientation



Create histogram

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case 
shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor

SIFT descriptor

Adapted from slide by David Lowe



SIFT vector formation

• Computed on rotated and scaled version of window 
according to computed orientation & scale
• resample the window



Reduce effect of illumination

• 128-dim vector normalized to 1: invariance to contrast 
changes 

• Threshold gradient magnitudes to avoid excessive 
influence of high gradients
• after normalization, clamp gradients >0.2

• renormalize



Other tips and tricks

• When identifying dominant orientation, if multiple modes, 
create multiple keypoints

• Weigh pixels in center of patch more highly (Gaussian 
weights)

• Trilinear interpolation 
• a given gradient contributes to 8 bins: 

4 in space times 2 in orientation



Properties of SIFT

Extraordinarily robust matching technique
• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation
• Can handle significant changes in illumination

• Sometimes even day vs. night (below)
• Fast and efficient—can run in real time



Summary

• Keypoint detection: repeatable 
and distinctive
• Corners, blobs, stable regions

• Harris, DoG

• Descriptors: invariant and 
discriminative
• spatial histograms of orientation

• Next up: using correspondences 
for reconstruction




